
a Fermi National Accelerator Laboratory

TM-1463
2390.000

A Multiple Node Software Development Environment

P. Heinicke, T. Nicinski, P. Constanta-Fanourakis, D. Petravick, R. Pordes,
D. Ritchie, and V. White
Computing Department

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

June 1987

*Presented at the Fifth IEEE Conference on Real-Time Computer Applications in Nuclear,
Particle, and Plasma Physics, San Francisco, California, May 12-14, 1987.

a Operated by Unhfersities Research Association Inc. under contract with the United States Department of Energy

TM-1463

A Multiple Node
Software Development Environment

Peter Heinicke, Tom Nicinski,
Penelope Constanta-Fanourakis, Donald Petravick,

Ruth Pordes, David Ritchie, Vicky White

Fermi National Accelerator Laboratory*
Computing Department / MS120

P. 0. Box 500, Batavia, IL 60510

ABSTRACT

Experimenters on over 30 DECnet nodes at
Fermilab use software developed, distributed, and
maintained by the Data Acquisition Software Group. A
general methodology and set of tools have been
developed to distribute, use and manage the software on
different sites. The methodology and tools are of
interest .to any group developing and using software on
multiple nodes.

Introduction

The Fermi National Accelerator Laboratory
(Fermilab) is a facility dedicated to basic research in the
field of high energy physics. Research takes the form of
nexperimentsn, which are conducted by groups of
physicists. The experiments are highly computerized;
there are usually one or more minicomputers devoted to
the tasks of data acquisition and analysis of the
experimental data.

Most experiments have at least one VAX or
MicroVAX computer, one or more PDP-11 comput,ers,
and possibly a few programmable microprocessors. Many
different experiments either actively take data or prepare
to do so simultaneously.

The Data Acquisition Software Group of t.he
Fermilab Comput.ing Department provides software and
support for the experiments. Experimenters use the
provided software to perform online data acquisition
and analysis required for their experiment. In some
cases, the software is used in a turnkey manner; more
often, it is used as t,he basis for more elaborate and
experiment-specific software. In the latter case, the
experimenters obtain the basic package and then
cust.omize it to their particular needs through their own
software development efforts.

Software is usually targetted for PDP-11 or
\‘A); computers. Other targets include microprocessors,
such as 68020’s, etc. Target. computers are physically
lorated at approximately 30 different sitps scattered
.vcr the 6800 arks of Fcrmilab. The VAX’s and
)icro\‘AS’s at thcsc sites arc connected to one another

\.in DECnrt. Tircsc VAX’s (or the Centrai Facility VAX
(11ustPr) are usrd by the rxpcrimrnrrrs for softwarr
cirvrlopmrnt in rnhanrinp; thr supplird softwarr a.\ wel!
a’: for onlinr data acquisition and analysis. Foftwarr ir;

transferred to these machines via DECnet from the Data
Acquisition Software Group’s Development VAX. It is
also transferred via magnetic media to the computers
not connected via DECnet; (PDP-11’s not connected
mainly due to memory limitations and microprocessors).

Additionally, the software sometimes needs to
be transferred to the collaborating universities and
research institutions which participate in Fermilab
experiments. The experimenter may then continue
software development or equipment, testing activities
while physically located at the home institution.

With so many sites and so much softaware in
use at these sites, we quickly realized that some
systemization of the task of organizing, maintaining, and
distributing the software was mandatory. Keeping track
of the software at. the various sit.es is a formidable and
necessary job. We must be able to offer assistance with
the current, version of the software at hand.

A requirement on the’systemization was that
it must support having different versions of the same
software at different sites or even at the same site.

While it might be possible in principle to
arrange to have the same version of the software at all
sites, in practice this does not occur. An ongoing
experiment does not necessarily want to avail itself of
the latest enhanced version of a piece of software; hugs
or side effects may be introduced which might.
complicate the primary task of monitoring the
experiment. Even when an experiment decides that the
new features outweigh any risks of complication, it, is
extremely important that the experiment be able to
switch back to the previous version as quickly and
reliably as possible.

In what. follows, we describe the organization
of our software into “Products*. how these Products
are created, maintained and versioned, and how this
Prodtict organization is used in the distribut.ion, of
software to the target VAX computers, and from there
to other target computers when necessary.

What is a Product?

A “Product” is an arbitrary group of logically
connected directories and files (stored on a VAXJVXIS
system) and referred t.o by a Product name and
optionally by qualifying names, such as the Version
number, target operating syst.em, or hardware int.erface.
The Product name is a printable ASCII string describing
the group in a mnemonic way. For each Product name.
there is a single development version of :he produc:
and/or one or more distribution x-ersions. It is no1
nrrrssary that a Product bc dcreloprd hy thr
Computing Drparrmcn: t.o fit into this schrmc.
HOWP~C~. tllr Produr; (thr dirrrtorirs and files whirl1

TM-1463

comprise it) must be organized in a prescribed way. The
constraints are relatively minor because we wanted the
ability to include all kinds of software as products--not

just those developed at Fermilab.

An example of a non-Fermi Product is
KERMIT, a communications package. KERMIT-VMS is
the Product name for the VMS version of KERMIT.

When the source code contained in the
development version of a Product is updated, either for
maintenance or enhancement reasons, a new “Version”
of the Product is generated. This may occur even if
the source code of the Product is unchanged. For
example, if a Product is rebuilt using new Dversionsn
of code on which it depends (such as an object library),
but which is not a part of the Product itself, a new
version of the ‘Product is still generated. A Product
version is used to inform the user, developer, and
Product maintainer of not only which level of source
code of the product it contains but also the entire state
of the Product, its dependencies on other software
Products, etc.

As a simple example of a Product with
different Product versions, consider the COURIER
product for VAXONLINE. Version V1.0 of the
COURIER Product refers to the first released version of
COURIER for VMS. It will normally have a product
directory by the name of COURIER-Vl-0. Later
versions will have similar product directory names, e.g.
COURIER-Vl-2. If a UNIX version is developed, the
support group would need to decide whether to keep
the old name. If they decide to, they can rename the
two products to be COURIER-VMS and
COURIER-UNIX, or leave it as COURIER and
COURIER-UNIX.

Products can be divided into two levels of
complexity: “simple” and “compound.” A simple
Product consists of a collection of software which is
expected to be used, upgraded to a new version, and
distributed to target sites independent of the state of
other software Products. The decision to organize a
product as a “simple” one is basically that of the
developer; it is a statement that this Product is
somehow basic and not further made up of component
Products.

This does not necessarily mean that the
Product was not dependent upon other software external
to the Product when it was “built” (compiled, linked,
etc.). Nor does it necessarily mean that the Product
requires no other software Product in order to function.

For example, many of our Products are
written in FORTRAK. These are definitely dependent
upon the FORTRAN compiler and the FORTRAN Run
Time Library--both of which are external to the
product and which (in the case of the Run Time
Library? at least) are required in order for the Product
to function.

A compound Product is a collection of different
component” Products (either simple or compound),

frcqurntly used together. These Products do not
necessarily have to be dependent upon each other
al:hough in man)- cases they arc. They may be grouped
togrthrr only for rasp of distribution of many small
products which change infrrqncntly. .4lternatiwly, thry
may bc grouped togrtircr because of dependencies on
carh other; hcnrc. R rhangr in a component Product
wou!d indicatr that i; nr\v version of onr or more of t ht
o:hrr romponcnt.s 15 either ncressary or desirable.

-2-

The distribution and installation of the
software is only a peripheral (but time consuming)
activity. To permit us to spend more time on software
development, we have devised a formal specification for
“Products” and specialized procedures, whose goals are:

Provide a Uniform Product Specification. The
product specification is meant to provide system
management tools and the user with a uniform interface
to the software we are responsible for. The
specification includes:

o the directory tree structure of the files in a product

o a list of required and optional files,

o the naming conventions for these files and directories,

o how logical names should be used.

Svstem.
creatin

Keeping Track of Product Versions on a
Different sites use different versions of a product

g a need to maintain a database of which
products and versions reside on a particular system. This
functionality is provided by a system management tool
we call SITE-PRODUCTS.

Simplification of Product Distribution. We need
to automate the distribution of versions of nroducts to
remote sites (making use of DECnet) and the- installation
of the products on the target site. Such automated
procedures are needed both for efficient use of our time
and to minimize the risk of errors or omissions.

Transportability to External Sites. Although
restrictions are placed on a products structure and
interaction with users (how the product is distributed
and how the system manager treats it), it is still
necessary to permit the product to be easily installed
and used on systems which do not follow our
methodology.

Permit Switching Between Product Versions. In
order to maintain and improve existing products, and
have the new releases accepted by experimenters, there
is a need to allow the use of the latest version of a
product, but also to inst.antly and transparently
“switch9 to using a previous version residing on the
same system.

The abi1it.y to switch between versions on the
same system is also important for product developers
and maintainers. A user may discover a bug at a
previous release of the product - and the product
maintainer is then able to check for the bug in that,
release just by switching t,o it. This capability is
provided by PR.ODUCT-SETUP and the database of
products and their versions (maintained by
SITE-PRODUCTS).

Permit the Composition of a Product. to he
Known Precisciy. We make extensive use of DEC’a C&IS
(Code Manarrcment Svsteml and hlhiS (Module \
ifanagcment S&ten,) to Control ‘the source code version
of a product and t.o auromatr the construction of that
product from its sources and any othrr libraries CIT. it
may be dependent on. (CI\lS and 511\IS are similar
to thr 5CC.C; and LIAKE utilities on L-SIX). In
situatiotis whrrr a product may bc drprndcrit on
iihraricq in other proriurt.s - the spwific wrsion of the

TM-1463

library-relat.4 products used must be both controllable
and forever known. The t.ime-stamps of the individual
files as used by MMS are not sufficient to control such
inter-dependencies.

The procedures, (which we call BUILD), permit
the dependencies of one product on another, either as a
part of a compound product, or just as a required but
separate piece of software, which must be present in
order to build the product, to be expressed in a formal
way. From this formal specification the order of
creation of the component parts can be determined and
the business of creating a very large software product
can be automated in a foolproof way.

The Resulting Tools

All the management tools we have developed
are written as DCL command procedures. Any language
could have been chosen, and the system could have been
implemented in a more operating system independent
way. DCL command procedures were chosen because of
speed of implementation, and because we underestimated
the full extent of the project we were undertaking.
Fut*ure implementations of this functionality will probably
use a different tool than DCL, since DCL is so slow,
and unmodular. We are considering reimplementing the
system in FORTRAN or an inexpensive 4GL.

The remainder of this paper will discuss the
concepts and management tools introduced above which
together allow us to achieve the goals outlined in the
previous section. These include: Specification of a
product, use of the BUILD procedures, the
SITE PRODUCTS, DISTRIBUTE and
PRODUET-SETUP procedures.

Specification of a Product

The product specification provides system
management tools and the user with a uniform
interface to the software. We have written a go-page
specification of a product including the mandatory and
recommended requirements thereon. The product,
specification addresses three areas:

o Directory tree structure and the files in a product.

o Logical names t.o be defined (associated with the
product.).

o Required and optional command procedures and how
they are used. (definition of parameters).

Directory Tree Structures

Products reside under rooted directories.
Actually, two rooted directories are associat,ed with a
particular product. The “Version” Root is the rooted
direct.ory for a particular rcrsion of a product. This is
the rooted directory that a user will see when using a
product.. \‘ersion Root.ed directories reside under an
cUmbrella” Rooted direcbory. The Umbrella Rooted
directory contains all the versions of a product.
Ho\vrrcr, more than one product and its versions can
reside under the same I‘mbrella Root. For exampic:

-3-

; DU40:[\'AXONL]I

1 COURIER 1

Courier Product Directory

The leaves are products, while [VAXONL.CO%RIER] is
the Umbrella Root. The Version Roots for the products
are [COURIER-V1
[COURIER-Vl-21.

-01, [COURIER-Vl-11, and
A directory named [VERSION] is

necessary for the current implementation of the product
tools, and contains information about which product is
installed. Future implementations will probably centralize
this information with the rest of t,he database.

For each product version, there is a set of
required and optional directories:

L!brzs / / socrct I i LisUngs : : Tes:s /
1 / - ‘/ /, ; i

Sample Product Version Directory

The [PRD Vl O] directory is the Version’s Rooted
directory, FhilelCOM] and [SYSTEM] are required
directories, and [MAIKT] is an optional directory.
Beyond t,hese directories, the developer can use any tree
structure (under the product’s version rooted directory).

Logical R’ames

To keep products site-independent. logical
names are used to point to different fiics. All logical
names should br defined in terms of one logical narnr
which points t,o lower lercl in the dirrctory trre:

‘produrt’ZROOT

‘l’
which is t,hc rooted logiriti namr pointing t,o thv
I? 0 D I- C T’s I-crsion I?not. I33 changing

‘product’$ROOT’~ drfirlition (with I’RODCCT SETUP).
% :1w: can racii! “switch” berween diffrrrnt %Gons of

a Product. In the rxample in the first figure, the
rooted logical name for COURIER is

$ SHOW LOGICAL COURIERSROOT
“COURIER.$ROOT” =
“disk:[VAXONL.COURIER.COUR.IER~Vl-O.]”

R.equired Files

The product specification requires that each
product provide two command files, of defined logical
names, to be implicitly invoked at system bootstrap time
a.nd when a user wants to use the product. All
products must provide these files in a particular
directory for the product version. The specification also
recommends a Help file to be provided with each
product; this is automatically included in the general
product Help library when the product is entered into
the SITE-PRODUCTS database.

jCOMlSETUP.COM is used to defineTkatic.;l
names and symbols on a per process basis.
the user invokes SETUP.COM (normally at login time;
if there is a need to use the product.

JSYSTEMlPRSTARTUP.COM is used during
system boot time (product startup) to define shareable
logical names in the logical name table generated for the
product, and to perform any other operations which
affect the product system wide (such as INSTALLing
files, loading device drivers, starting a queue, etc.) and
other privileged initialization functions.

Developing the Products (BUILD\

The BUILD procedure is used to construct a
product based upon its dependencies on other products.
BUILD takes into account that a product may:

o Depend on other products.

o Depend on specific versions of other products.

o Incorporate other products totally within it.
The construction, of a product consists of compiling and

linking the software comprising the product.

A product developer uses a product.
hlaintenance Language (PML) file to describe how a
product is dependent upon other products. Only the
immediate dependencies need to be described, since
BUILD recursively uses the dependent product’s PML
files to generate a final list (a product. Maintenance
Output (PMO) file) which sequentially describes the
order in which products should be built (t,o satisfy all
dependencies).

For example, the product KCERhIIT-\‘hiS is
to be ‘-BUILT”:

o KERhlIT-\‘h,lS is drprndcnt upon an another
;::rdm-t callrr! GET PORT -

o KERMIT I’DI’ is dependent upon KERMIT-RT.
KiER>lIT-R%. and ~iER1IIT-RSTS. BUlLD wouId
rirrrrminc- thn: thr products would need :o be buil: in
the ff)llotving order.

GET PORT
KERMIT VMS
KERMIT-RT
KERMIT-RSX
KERMIT-RSTS
KERMITIPDP

TM- 1463

-4-

BUILD then will construct, the products in t,he
appropriate order to generate the final product. To
save time, BUILD will not construct a product if the
required version already exists.

The actual details of construction of each of
the component pieces are left up to the component piece
of software. We normally use DEC’s CMS and MMS
wherever possible.
conjunction with our

This is especially useful in

version of a product
methodology of one development

and multiple distribution versions.
By having a single CMS library in the development
version of each product and creating classes for each
source release- level we avoid the need to keep the
sources with or for each version of the product. We
can always recreate any version at any time. This
saves disk space and also provides a centralized record
of who changed the software and when.

Command files which actuzily fetch
the sources, compile and link.

I I

Final

Steps in *Build”ing a product

system hianagemcnt of Products (SITE PRODrCTsl

SITE PRODI’CTS \vas drvclopcid IO krctp
lrark of whichyersions of which produrts rcsidr on a
sysien!. It noi only maintains a dnrahasr of products
and ~hrir versions. bui it sch~ri~~le~ rhr starting up of
!~rodllrtz al =yvc’rn ‘boo: t ime ior anv nrhrr timrfi and
iii<’ t;huttinK down of product‘+. SiTE-FRODiJCTS

avoids the riced for the syst.em manager to change the
system specific startup command procedure
(SYSTARTUP) every time a product or a version of a
product is added, modified, or removed.

Products are made “known” t.o
SITE PR.ODUCTS. The “Known Product List” file,
maint&s this information.

For each known product, SITE PRODUCTS
maintains a “Product Version List” file<hich resides
under the product Umbrella directory. The product
developer is able to add, modify, and remove product
versions without requiring privileges (only access to the
particular product’s area is required).

The SITE PRODUCTS procedures point to
the Known Product Tist using a logical name. Users can
use SITE PRODUCTS to maintain their own Known
Product I%& and Product Version Lists. This can 6e
extended for use on a VAX Cluster system, where a
common Known Product List is used to startup
(shutdown) all Products common to all nodes in the
Cluster. Then, by redefining the logical name, a node-
specific Known Product List can be used to manipulate
software products licensed (or useable) only for that
particular machine.

SITE_PRODUCTS allows the addition,
modification, and removal of products and Versions.
These operations only modify the Known Product List
and Product Version Lists, not the actual files of the
products. When a product version is declared to be the
default version on a system, its Help file is included in
a general product help library (if one exists) and a
BuIletin is posted on the system.

For each product, the Known Product List
maintains the product’s name, the specification of the
Umbrella Root, and other miscellaneous information.
Associat,ed with each product version in the product
Version List is a directory path from the Umbrella Root
t,o the rooted directory for the product version.

When a product is staitcd up hy
SITE-PRODUCTS, a shareable (system wide) logical
name table is created to contain logical names defined
by the product. Then the product specific startup
command procedure is invoked. This procedure usuaily
3efines logical names, device drivers: starts up queues,
installs privileged images, etc.

Using the Product,s (PRODUCT SETUP1

The final stage of an>; product is its use.
PRODUCT-SETUP is used to setup” a product for
use by a user. It also allows a user to choose which
version of a product to setup. Setting up a product
involves the definition of logical names and symbols
required for using the product.

A symbol by the name of SETUP is used on
all systems to invoke PRODUCT SETITP. TTsers of a
software Product. such as our example KERMIT-1’hlS
simply type

TM-1463
-5-

versions, PRODUCT-SETIYP creates a new logical
name table (which overrides the old table) and defines
the logical names for that particular version. Therefore,
different product versions are not required to use the
same logical names.

Obtaining the Products (DISTR.IBUTE\

DISTRIBUTE provides a system manager on a
remote machine the ability to copy products, from an
“Archive machine”, and install them. Most of the time,
DISTRIBUTE is used over DECnet, but it also provides
a tape mode, which permits products to be distributed
and installed at external sites using magnetic tape as a
transfer medium.

DISTRIBUTE interactively queries the user for
the information it needs. The- questions are self
explanatory, so that no documentation is normally
required in order to obtain a product. Besides the
product name and version, DISTRIBUTE asks where the
product should be placed (the disk and Umbrella Root),
and whether the product and its version should be
declared to SITE-PRODUCTS.

Archi”e NO*.?

intermediate d

Distribute Processes

When a product is select,ed hy the user,
DISTRIBUTE uses that product’s Product Maint,enancr
Output (PMO) file (generat,ed during a BUILD) to
determine which componrnt products nerd to bc ropird
owr as part of rhe chosen product. This provides all
sites with a completr and consistenr view of a product.
Products which arc noi ronslrucred rvith BI:ILD and
thcrrfow hi]Vc no FM0 filp ran also br distrihutcti -
all f-11~ in tier tiirwtory trw ctcmnlillg from thr protillrt
vvsion roolcci dirrrtoy wil l te taken -to rornprisr rj3g

product Version.

DISTRIBUTE uses BACKUP savr srts
compatible wit,h the VMSINSTAL utility (part of
VAX/VMS). Because the product conforms to the
product specification, only one KITINSTAL file (used by
VMSINSTAL) needs to be written for all products.
This frees the product devclopcr from whiting code used
strictly for the purpose of installing a product.

A complete log of software distributed, date,
version and to where is maintained on the Archive
machine

Conclusions

The organization of products and the
procedures described in this paper have been in use for
more than a year now. Hundreds of products have
been -distributed to target sites. The sacrosanct nature
of a product version once built ha’s enforced a strict
discipline on program development and aided immensely
in tracking down complicated problems where any one of
a number of hardware and software variables could have
been at the root of the problem. The procedures
described were first developed for software to be
executed on a VAX(VMS). We have found them such
a useful aid for distribution, maintenance and archiving
that we extended the concepts to cover software for
other operating systems in use.

We have found a standard product
specification to be extremely useful. Not only has it
enabled us to write the management tools described but
it has also helped enormously in the ease of
understanding, maintaining and supporting our software.
New members of the group and new users new to
Fermilab can very quickly produce software to conform
to the general specifications and obtain and use
software that is available. It is much easier for any
member of the group, regardless of particular area of
expertise to be able to distribute, demonstrate, find bugs
in, create a new version of any product. New software
products produced elsewhere at Fermilab or at other
institutions or vendors can be quickly added to the set
of available software and made available in the same
uniform way to all the users on site (via the same
SETUP command). Following software product
“standards” has saved manpower also in enabling us to
write general procedures. For example, the arrival of
hlicrovaxes with limited disc space created a need to
trim products. A general procedure which omitted all
list. map and documentation files from a distribution
version could be writ,ten because of t.he standards
imposed, thus solving the problem in general for all
soft,ware which we maintain or distribute.

This entire program of work was
undertaken without a proper realization of the size of
it - really as a non-serious sideline, which people did a
little work on when the need arose. If we were doing
it again we would better understand the benefits and
scope of the project and would take it furt,her than we
have t.oday. The dat,abaae maintained by
SITE PRODUCTS would be made extensible and easily
accessible as a dat,abase. Some of the syst.em
management procedures would have been writ,ten in a
high Icvel language instead of DCL. thus increasing both
thrir speed and rxtensibility.

.kknou-irdgcmrnts

Coafribufions to the ideas, d&nitions and
rocedures

R
hew begn made at various tima by all

e/hbws of the Data AC ubition, Software. and D%C
Syshhs Group in the t 0mPutlng Department at

TM-1463
-6-

Fermilab - which consist of thr authors, David Bclrg,
Eileen Berman, Andy Cohen, Terry Dorries, Arkady
Lubinsky, Carmenita Moore, Liz Quigg, Dave Ritchic,
Chip Kalihcr, Nancy Hughart and Steve Kalisz. We also
acknowledge helpful feedback from various users of the
system (DISTRIBUTE in particular) ranging from on-site
local system managers to experiment participants
distributing soft,ware over DECnet from Italy.

References

PN’s refer to Fermilab “Programming Notes”;
M’s refer to Internal Notes. Documentation is available
from the Computing Department Program Librarian.

PI

PI

PI

141

151

PI

[‘I

R. Pordes, Data Acquisition Software Group
Product Specifications, Fermilab Computing
Department Note, IN-141, August, 1985.

P. H. Heinicke, Backup / Distribute Procedure
for Product Distribution, Fermilab Computing
Department Note, PN-261, September, 1985.

T. H. Nicinski, SITE PRODUCTS / Maintaining
Known Products, Fermilab Computing Department
Note, IN-140, February, 1986.

T. H. Nicinski, BULLETIN / Maintaining: an
Electronic Bulletin Board, Fermilab Computing
Department Note, IN-141, August, 1985.

P. C. Fanourakis, BUILD Procedure for
Product Distribution, Fermilab Computing
Department Note, PN-259, July, 1985.

R. Aurbach,Using VMSINSTAL with User-written
Applications. Fermilab Computing Department
Note, PN-262, October, 1985.

T. H. Nicinski,PRODUCT SETUP User’s Guide [
Set,ting TJr, Products, Fermilah Computing
Department Note, PN-269, February, 1986.

